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Combined weakest link and random defect 
model for describing strength variability 
in fibres 

W. F. K N O F F  
Fibers Research Division, E. I. DuPont De Nemours & Co. Inc., Richmond, Virginia 23261, USA 

A mathematical model which describes the strength variability along the length of a fibre was 
developed. The model is a combination of the modified weakest link and random defect models. 
This combined model describes very well the strength variability data of aramid fibres. 

Nomencla ture  
L Specimen length 
F(s) Cumulative frequency distribution of link 

strengths 
1 - F(s) Survival function of a link 
FL(s) Cumulative frequency distribution of 

strengths of a specimen of length L 
1 - FL(s) Survival function of a specimen of length 

L 
s Strength variable 
So Fibre defect-free strength for a random 

defect or combined model 
sl, s2 �9 �9 �9 Fibre strength at the point of a defect 
s'~, s ~ . . .  Strength a fibre must have at the location 

of the defect to have a strength of s at the 
location of the defect 

X Length of a hypothetical link in 
a weakest link model 

101, O z . . .  Defect frequencies (mean number per 
unit length) 

vl, v2.  �9 Defect severities, 0 ~< v ~< 1 
9(s) Defect frequency distribution function 

defined in terms of the strength at the 
defect 

~(v) Defect frequency distribution function 
defined in terms of the defect severity 

~, [3 Defect frequency distribution parameters 
(Equation 14) 

a, b Weibull distribution parameters (Equa- 
tion 4) 

P(m) Probability that m defects will occur in 
a given specimen length 

m Number of defects occurring 
g Mean strength 
C V Coefficient of variation of strength 

1. I n t r o d u c t i o n  
Understanding the nature of the variability in tensile 
strength of fibres and the ability to quantitatively 
express it in mathematical terms is a subject which has 
received considerable attention. This effort has been, 

to a great extent, driven by a need to develop a better 
understanding of the strength characteristics of struc- 
tures which are composed of a large number of fibres, 
such as yarns, cords, fabrics, cables and composite 
parts. The variability in tensile strength of fibres used 
in such arrays is an important factor in determining 
the tensile strength of the final structure relative to the 
actual average strength of the individual filaments, 
and thus becomes a key aspect of the design and 
specification process. 

Much theoretical analysis has been carried out in an 
effort to understand the tensile failure processes of 
fibre arrays and predict the strength of the array based 
on the filament properties. Early efforts to address this 
problem by Daniels [1] and Coleman [2] considered 
the strength of bundles composed of non-interacting 
uniform fibres of different strengths. Because of the 
non-interaction assumption, there was no need to 
include variability in strength along the length of the 
fibres. The later inclusion of fibre-to-fibre interaction 
by which fibres transfer tensile loads among them- 
selves [3, 4] required the consideration of load trans- 
fer lengths within the array and therefore some 
estimation of the magnitude and nature of strength 
variability along the fibres. 

The variability of strength along filaments is also 
important in other areas of fibre science and techno- 
logy. Such variability is likely to be a cause of poorer 
yarn quality and processability in the form of more 
broken filaments resulting from contact of the fila- 
ments with guides and other surfaces. Consideration 
of strength variability is also important in single-fibre 
adhesion determination techniques in which the fibre 
pull-out or segment length is analysed. 

There are a number of models available to describe 
the strength variability on fibres. The choice of the 
model to be used should primarily depend upon the 
proposed hypothesis regarding the nature of the 
strength variability of the particular fibres of interest. 
The suitability of the proposed model to represent the 
fibre variability can then be evaluated by comparing 
predictions of the model with actual data. 
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2. Earlier models 
2.1. Weakest link model (classical and 

modified) 
One mathematical fibre strength model commonly 
employed to describe fibre strength variability is the 
classical weakest-link model which is commonly rec- 
ognized to have been first proposed by Pierce [5]. 
This model assumes that the length of fibre tested can, 
with respect to strength, be described as a series of 
a large number of randomly assembled uniform 
strength links of which the strengths are independent 
identically distributed random variables with a com- 
mon cumulative distribution function. Fig. 1 is a sche- 
matic diagram of how the weakest link theory repre- 
sents fibre strength. The cumulative distribution of the 
fibre strengths is then given by 

F,(s) = 1 - [1 - F(s)]" n >> 1 (1) 

where F(s) is the common cumulative probability dis- 
tribution function of the link strengths, s is the 
strength and n is .the number of links needed to de- 
scribe the fibre. In somewhat different terms, 1 - F,(s) 
is the probability that a given fibre sample containing 
n links will be unbroken at an applied force of s. This 
quantity is more appropriate when discussing a failure 
and is frequently designated the "survival function". 

Further, if ~. is the length of the links necessary to 
describe the fibre and L is the actual length of the 
specimen, then, if n is very large, L >> )~ and L/L very 
closely approximates n. Therefore 

1 - FL(S) = [1 -- F(s)] L/x L >> L (2) 

where 1 - FL(s) is the survival function for a specimen 
o f  length L. 

It has been shown in a previous paper [6] that the 
classical weakest-link model has a serious deficiency 
with respect to describing actual data because it pre- 
dicts that the measured mean strength of a fibre con- 
tinues to increase at smaller test lengths, and that this 
is frequently not the case. In order to provide a better 
model, a modified weakest-link model has been de- 
rived in which there is no restriction regarding the 
specimen length L with respect to the link length ~.. 
The form of the survival function of fibre strengths for 
this modified less restrictive form is 

1 - FL(S) = [1 -- F(s)] (L/x)+1 (3) 

In order for the relationships derived above to be 

useful, the form of the distribution of link strengths 
must be available. It is possible to compute the distri- 
bution numerically from data: However, this does not 
reduce the shortcoming of these models and substan- 
tially increases the complexity of the necessary com- 
putations. The work of Weibull [7] provided a very 
successful and convenient function form for the distri- 
bution of link strengths, which is known as the 
Weibull distribution: 

E(s) = 1 - e x p [ -  (s/a) b] s>~0 a , b > 0  (4a) 

g = a r [ 1  + (!/b)] (4b) 

C V  = {r(1 + 2/b)] - F2[1 + (1 + b)]} 1/2 
(4c) 

rE1 + (l/b)] 

where g is the mean, CV is the coefficient of variation 
and F is the gamma function. 

Combination of the Weibull distribution with the 
general classical weakest-link relationship (Equa- 
tion 2) results in the following: 

= )d/b a r(1 + (l/b)] 
L1/b (5) 

Combination with the modified weakest-link relation- 
ship (Equation 3) results in the following: 

r [ 1  + (l/b)] 
g = a[(L/)Q + 111/b (6) 

The coefficient of variation of the strength is the same 
for both the classical and modified weakest-link 
models. It is identical to Equation 4c and which is only 
a function of the Weibull parameter, b. 

2.2. R a n d o m  d e f e c t  mode l  
Another frequently used model is one which is simply 
described as a random defect model. With respect to 
the fibre strength, this model considers the specimen 
to have some constant high level of strength upon 
which dimensionless non-interacting strength-redu- 
cing defects randomly occur. Fig. 2 is a schematic 
representation of this model. If a single type (severity) 
of defect exists, then the probability that m defects will 
occur in a specimen of length L is provided by the 
Poisson discrete probability distribution function. 

L ' p  m exp ( - Lp) 
PL[m] = (7) 

m! 

Strength 

0 
Distance along fibre 

Figure 1 Classical weakest-link model: schematic representation of 
fibre strength along its length. 
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Figure 2 Random defect model: schematic representation of fibre 
strength along its length. 



where PL[m]  is the probability that m defects will 
occur, 9 is the mean number of defects per unit length, 
L is the specimen length and m is the number of 
defects. 

For  the purpose of defining the strength of this 
fibre, we are only interested in the case when rn = 0, i.e. 
the probability that no defect occurs in a specimen of 
length L. It is 

P L [ m  = 0] = exp( - -  Lp)  (8) 

If the model fibre has a defect-free strength of So and 
a strength of Sl when one or more of the defects of 
a single type are present, the survival function, 
1 - FL(s) is 

1 -- EL(s) = 1 s <~ sl  (9a) 

when the fibre will survive regardless of the presence of 
a defect, 

1 - EL(s) = exp( - -  L9)  s l  < s <<. So(9b)  

when the fibre wilt survive only if no defect is present, 
and 

1 - EL(s) = 0 so < s (9c) 

when the fibre will not survive regardless of the ab- 
sence or presence of a defect. This is shown in Fig. 3. 

For  n types of defect, designated 1, 2, 3 . . .  i . . . .  n, 
which result in fibre strengths s, < S,_l 
< . . . s ~ . . .  < sz < s~ < so, and with mean fre- 

quencies 9,, 9,-1 �9 �9 �9 9i . . . .  92, 9t, the survival func- 
tion becomes 

1 - EL(s) = 1 s <~ s, (10a) 

1 - F r ( s )  = e x p [ - L  ~ 9 j ]  S i + l < S  <<.s, 
j = i + l  

i = 0 , 1 , 2 . . . n -  1 (t0b) 

1 - FL(s) = 0 So < s (10c) 

]'he survival function can also be expressed in terms of 
a continuous frequency distribution of defects; 

1 - FL(s) = 1 s = 0  ( l la)  

Z" 

C 

C_ 
4J 
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e x p ( - L p )  

o I 
0 St S o 

Break ing  [oaO 

Figure 3 Hypothetical survival function for random defect model 
with a single type of defect (Equation 9) showing breaking load of 
fibre if no defect occurs (So), and if one or more defects occur (Sl); 
L = length of specimen, 9 = mean frequency of defects per Unit 
length. 

1 - - F L ( s )  = e x p [ -  L f l  p ( x ) d x  ] 

1 - FL(S) = 0 So < s 

0 < s ~ < s o  

( l lb)  

( l lc)  

where 9(x)  is the frequency distribution of the defects 
defined in terms of the fibre strength at the location of 
the defect. In order to avoid discontinuities in the 
survival function at s = So and s = 0, the defect fre- 
quency distribution must become unbounded as s ap- 
proaches So and unity at s = 0. The requirement that 
the defect frequency distribution become unbounded 
as s approaches So is a result of the fact that a defect 
ceases to be a defect when s = So and therefore it 
becomes undefined. In many random defect models, 
the value of So is tacitly assumed to be infinitely large 
and an appropriate frequency distribution is chosen. 
A notable example of such a defect frequency distribu- 
tion is 

bx  b- 1 
9(X) -- ab X (12) 

which upon substitution into Equation 1 lb gives 

1 - - f L ( s )  = exp -- ~ (13) 

This is the identical expression obtained when the 
Weibull cumulative distribution function (Equa- 
tion 4a) is used in the classical weakest-link model 
expression (Equation 2). This particular example, 
which was the one chosen by Weibull in his original 
work, illustrates the fact that the random defect and 
classical weakest-link models are actually different 
representations of the same model, a fact which has 
been noted previously [8]. This is a direct result of the 
classical weakest-link model requirement that L >> L. 
The modified weakest-link model, in which there is no 
restriction as to specimen size L with respect to the 
link size X, is a distinct and different model from the 
classical weakest-link and random defect models. 

The form of the defect frequency distribution is of 
critical importance in defining the applicability and 
usefulness of this model to real data. A particularly 
effective defect frequency distribution proposed by 
Phani [9] is derived from the beta distribution. In its 
simplest form this is a four-parameter function. How- 
ever, in the context of the above discussion, two of the 
parameters are used to define the defect-free strength 
So and the total number of defects present. The two 
remaining parameters ~ and 13 define the shape of the 
frequency distribution by the function 

f s  s ~< So (14) 
( s / s o )  ~ 

o 9 ( x ) d x  = N [1 - (S/So)] ~ 0 <~ 

where N is a constant which is related to the number 
of defects present. This distribution is quite flexible 
and has been successfully applied to carbon and glass 
fibre data. However, it is still limited by (he funda- 
mental nature of the random defect model. That  is, as 
the mean strength becomes less sensitive to the test 
length, the coefficient of variation approaches zero. 
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This property seriously limits the wide application of 
this model. 

3. C o m b i n e d  w e a k e s t  l ink and r a n d o m  
d e f e c t  m o d e l  

The purpose of this paper is to present a model for 
fibre strength variability which is a combination of 
both the weakest link and random defect models. 
With this model the fibre strength is represented as 
a chain of randomly assembled links of length X, as in 
the modified weakest-link model. It is further assumed 
that these links also contain randomly occurring, in- 
dependent, non-interacting dimensionless defects 
which obey the probablistic relationship presented in 
section 2.2. A schematic representation of this model is 
shown in Fig. 4. 

In order to develop the mathematics of this model, 
it is best to start with a simple case and build to 
a generalized expression. Consider a specimen com- 
posed of a single link of length X with a cumulative 
distribution function of strengths F(s), and that along 
this specimen two types of non-interacting defect ran- 
domly occur. These two types of defects have severities 
of vl and v2 where the severity is defined as the 
fraction of strength remaining at the location of the 
defect. Thus, a severity of 0 indicates that no strength 
remains whereas a severity of 1 indicates that the 
defect causes no reduction in strength. These defects 
occur at mean frequencies of 91 and P2. We further 
define strength s'~ and s~ to be the strengths which 
a given defect-free link must have such that, if it did 
contain a defect of severity vl or v2, it would have 
a breaking strength of s. This is clarified mathemat- 
ically as 

s'l = S/Vl (15a) 

SP2 = S/V 2 (15b) 

where s ~< s'~ < s~ and v2 < vl ~< 1; Fig. 5 shows 
the relationships of these strength values with respect 
to a hypothetical survival function. In the defect fre- 
quency distribution above (Equation 14) the ratio S/So 
is the severity v as defined in this section. 

For this situation, the probability that this specimen 
is unbroken at an applied force ofs is a combination of 
probabilities regarding the absence of the defects and 
the defect-free strength of the link. This is the first step 

0 Distance along f ib re  L 

Figure 4 Combined modified weakest l ink-random defect model: 
schematic representation of fibre strength along its length. 

in the merging of the mathematics of the random 
defect and the modified weakest-link models. Con, 
sider the conditions necessary in the simple single-link 
two-defect model described above for the specimen to 
be unbroken at an applied force s. If So is the defect- 
free strength of the link of interest and mt and m 2 are 
the numbers of defects of types 1 and 2 respectively 
occurring in that link, then the total probability P that 
the link is unbroken at an applied force of s has three 
terms as shown below: 

P [specimen unbroken at force s] 

= P [ m l  = 0, m2 = 0] P Is <~ So < s'a] 

+ P[m2 = 0 ]P [ s~  ~< So < s~] + P[s~ ~< So] 

(16) 

The first term in the above expression addresses the 
case in which So is greater than the applied force s but 
less than S'l. In order for the link to survive a force s, 
there cannot be a defect of severity either 1 or 2. That 
is, both rn 1 and m2 must be zero. In the second term, So 
is greater than s'~ but less than s~. In order for the link 
to survive an applied force s there cannot be a defect of 
type 2. That is, m2 must be zero. The occurrence of 
a defect of type 1 is of no consequence for this case. 
The third and last term represents the case in which So 
is greater than s~. If this occurs, the defects are of no 
consequence. The link will survive regardless of their 
presence or absence. The probability detailed above is 
the survival function, 1 - F(s), of the specimen and. 
can be transformed using the following relationships. 
From the random defect model (section 2.2), we obtain 

P [ m 2  = 0] = e x p [ -  p2X] (17a) 

P [m I = 0, m 2 = 0] = exp[  - (Pl + Pt)X] (17b) 

From the weakest link model (section 2.1), we obtain 

P [ s  <~ So < s'l] = F(s'l) - F(s) (18a) 

P[s' l  ~< s < sl]  = F(s l )  - V(s'2) (18b) 

P[s'2 <~ s] = 1 - F(s'2) (18c) 

Substituting Equations 17 and 18 .into Equation 16, 

4J  
O3 (- 
OJ 
L 
4J 
m 

0 
0 

Strength 

\ 

s s s~ 

Strength 

Figure 5 Hypothetical survival function for a single link with two 
defect severities (Equation 15) showing defect-free strength neces- 
sary for link to have strength ofs if defect of type 1 is present (s'l) and 
if defect of type 2 is present (s'2). 
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the following result is obtained: 

1 - F(s) = e x p [ -  (Pl + pz)X] [F(s'~) - F(s)] 

+ e x p [ -  922] [F(s~) - F(s'l)] 

+ E1 - F(s~)] (19) 

where, again, F(s) is the common cumulative probabil- 
ity distribution function of the link strengths. General- 
izing this expression to n types of defect occurring on 
single link which has been randomly chosen from 
a population of links with a common cumulative 
probability distribution F(s), we have 

1 - F ( s )  = e x p [ - X ~ = I  ~ P~l [F(s 'a)-F(s)]  

+ e x p [ - X i = 2  ~ PiI [F(s ' z ) -F(s ' l ) - l ' ' "  

+ expE--Xi=ki P~l[F(S'k)-F(s~-l)] + . . .  

+ e x p [ -  X ,=,,~ 9~] [F(s',,)--F(s',_t)] 

+ 1 - f(s',) (20) 

Before this can be expanded to describe a chain of 
such links by substitution into Equation 3, an import- 
ant point must be recognized and included in the 
model. The modified weakest-link model (Equation 3) 
has no restrictions as to the size of L with respect to X. 
It accommodates fractions of links included in the 
specimen through the assumption that the strength 
within a link is constant and therefore, the strength 
introduced by a link is independent of how much of 
the link actually occurs within the bounds of the 
specimen. Above, a length dependence has been neces- 
sarily introduced through the exponential terms which 
represent the probability of the absence of the random 
defects. If Equation 19 were directly substituted into 
Equation 3, then in the case when L ~ X the com- 
puted survival function would actually be that for 
L = 2 again because of the exponential terms. This 
difficulty is solved by substituting the average link 
length in the specimen, designated A, into the ex- 
ponential terms of Equation 18 and then substituting 
this into Equation 3. The result is 

1 -  FL(s) = { e x p ( - A i = l ~  Oi) EF(s ' t ) -F(s)]  

+ e x p ( - - A i = k  ~ Oi) [F(s~) - F(S'k- O] + . . . 

+ 1 - F(s',)~ (21) 

In its integral form, this expression is 

x d F ( S ) d ( S ) }  (L/~)+ 1 (22) 

A m 

with the limits 

where ~ is the defect frequency distribution function 
defined in terms of the defect severity v, and dF is the 
frequency distribution of the link strengths. 

For a specimen of length L, which contains 
(L/L) + 1 links represented, the average length of 
a link segment is 

L XL 
- (23) 

(LA) + 1 L + 

and 

L >> ;L A ~- ;L (24a) 

L ~ ;L A - L (24b) 

which are the correct results. 
The above relationship (Equation 22) is a general- 

ized expression describing the strength variability 
along a fibre which includes the effects of both vari- 
ations in the strength which have finite length, the 
weakest links, and randomly occurring defects. It col- 
lapses to those models at the proper limits. When 
~(x) = 0 for all x, that is when there are no random 
defects present, it becomes 

(f; 1 - EL(s) = dF 

= [1 - F(s)] (L/~~ (25) 

When the link strength variability is zero and there- 
fore there is no weakest-link character to the model, 
dF(s/v) becomes a Heaviside unit function at the 
strength So, and the general relationship becomes 

1 - FL(s) = exp -- A ~(x)dx (26) 
jo 

which in the limit L ~ X when A --- L becomes ident- 
ical to the survival function for the random defect 
model (Equation 11). 

4. E x p e r i m e n t a l  p r o c e d u r e  
The strength (breaking load) of single filaments is 
determined by a technique which has been developed 
in our laboratory. All filaments are mounted on paper 
tabs with an amine catalysed cyanoacrylate adhesive. 
We have found this mounting technique to be quite 
satisfactory in terms of reproducibility, convenience 
and mounting speed. Tensile testing is carried out on 
an Instron Model 1122 tester equipped with 500 g 
capacity pneumatic grips. The elongation rate was 
approximately 20% min-1. 

In order for the strength data to be suitable for 
analysis and useful for testing strength-variability 
models, the sampling and testing must be done in 
a specific manner. Of course, the analysis must be 
done at various test lengths. For each test length 
chosen several filaments were randomly sampled from 
the yarn bundle and multiple strength determinations 
conducted along each filament. Data collected in this 
way can then be analysed to determine both the inter- 
filament and intrafilament components of strength 
variability. The importance of this is discussed below. 

935 



On all figures, the error bars designate the 95% confi- 
dence limits of that value. 

Five Kevlar | aramid fibre samples are included in 
this study. Three samples (designated Item B, Item 
C and Itefn D) are commercial-quality fibres. The data 
from Items B and C have been reported and discussed 
previously [6]. Samples E1 and E2 are a pair of 
experimental samples which are of particular interest 
for modelling. Both were manufactured at the same 
time. Item E2, however, was made by a process specifi- 
cally designed to eliminate strength-reducing defects. 
The data summary tables (Tables I to V) contain the 
pertinent information regarding each of these samples. 
The data from Items E1 and E2 were provided by 
Dr T. S. Chern. 

T A B L E  IV Filament breaking load data summary,  Item E1 

Parameter Test length (cm) 

0.18 2.5 25.4 

Strength 
Mean (dN) 4.88 4.47 3.66 
Standard error (dN) 0.1 0.14 0.26 
Determinations, total 24 24 24 
Filaments tested 4 4 4 

CV(~176 
Total 9.4 15 28.1 
Within filament a 9.4 15 28.1 

a From joint estimate [10]. 

T A B L E  I Filament breaking load data summary,  Item B 

Parameter  Test length (cm) 

0.18 1.0 2.5 5.1 25.4 

Strength 
Mean (dN) 4.75 4.68 4.39 4.15 3.48 
Standard error (dN) 0.15 0.08 0.11 0.09 0.12 
Determinations,  total 80 80 56 56 56 
Filaments tested 8 8 8 8 8 

CV (%) 
Total 12.4 16.1 17 18.8 26.5 
Within filament" 9.8 9.3 11.9 11.9 25.2 

"F rom joint estimate [10]. 

T A B L E  V Filament breaking load data summary,  Item E2 

Parameter Test length (cm) 

0.18 2.5 25.4 

Strength 
Mean (dN) 5.19 5.01 4.51 
Standard error (dN) 0.14 0.14 0.12 
Determinations, total 24 24 24 
Filaments tested 4 4 4 

C V (%) 
Total 8.4 10.3 9.3 
Within filament" 7.3 9.7 8.6 

"From joint estimate [10]. 

T A B L E  II Filament breaking load data summary,  Item C 

Parameter  Test length (cm) 

0.18 1.0 2.5 5.1 25.4 

Strength 
Mean (dN) 4.84 4.8 4.71 4.39 3.81 
Standard error (dN) 0.05 0.06 0.05 0.09 0.1 
Determinations,  total 80 80 56 56 56 
Filaments tested 8 8 8 8 8 

CV (% ) 
Total 8.5 6.7 8.1 10.7 16 
Within filament a 8.4 6.1 7.9 9.9 15.3 

"F rom joint estimate [10]. 

T A B L E  I I I  Filament breaking load data summary,  Item D 

Parameter  Test length (cm) 

0.2 1.0 2.5 12.7 25.4 

Strength 
Mean (dN) 4.41 4.44 4.2 3.18 2.87 
Standard error (dN) 0.06 0.1 0.11 0.12 0.12 
Determinations,  total 312 100 100 100 100 
Filaments tested 36 10 10 10 10 

CV (% ) 
Total 12.2 12.4 17.7 22.5 26.6 
Within filament" 9.7 10.9 16.8 20.7 25.2 

a From joint estimate [10]. 
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5. Discussion 
5.1. Data reduction and analysis 
The model deals only with a distribution of link 
strengths along a single hypothetical filament. It ig- 
nores any differences in the distribution between fila- 
ments and, therefore, is strictly applicable to data 
collected from either a sample in which all filaments 
have the same distributions of strengths along their 
length or a sample of a single filament which has 
a uniform distribution of strengths along its length. In 
practice, neither of these situations is likely or very 
practical and, therefore, sources of overall variability 
within a sample must be recognized and only those 
components pertinent to the model considered. 

Only the within-filament component of strength 
variability should be used when applying the filament 
strength versus test length data presented here to the 
model. A distribution in mean strength between fila- 
ments (the between-filament component of strength 
variability) will contribute to the overall strength coef- 
ficient of variation in the yarn sample, but will not 
impact the response of average strength of coefficient 
of variation to test length. This fact is clear if one 
considers a yarn sample composed of perfectly uni- 
form filaments of different strengths. For this hypo- 
thetical sample, the measured mean and coefficient of 
variation would be independent of test length. 

A joint estimate of the within-filament strength co- 
efficient of variation at each test length was made [10]. 



If the within-filament variances constitute a homo- 
geneous population, then this value is an estimate of 
the common within-filament coefficient of variation 
and the conditions of the model are well satisfied. If 
the variances are not homogeneous, the value is an 
estimate of the average within-filament strength coef- 
ficient of variation. This is a departure from the as- 
sumptions of the model and, depending on the degree 
of non-homogeneity, could cause significant differ- 
ences between the predicted and observed response of 
strength to test length. Bartlett's chi-square statistic 
indicates that, in most cases, the null hypothesis of 
variance equivalency can be rejected with a reasonable 
degree of confidence. The confidence of this rejection, 
however, may be erroneously high because of the 
assumption of normality made in the chi-square stat- 
istic test. Testing of the variance homogeneity using 
the gamma plotting technique [11], which is less sensi- 
tive to deviations from normality than is the chi- 
square statistic, does not support the rejection of the 
null hypothesis of. variance equivalency. Therefore, it 
is valid to assume that the jointly estimated coefficient 
of variation is an estimate of the common within- 
filament coefficient of variation. 

5.2. App l i ca t i on  of m o d e l s  
In general, the weakest link models, both classical and 
modified, and the random defect model are unable to 
describe well the nature of fibre strength variability 
with respect to the first and second moment of the 
strength distribution. As with any modelling effort, if 
the model fails to describe the observations, then one 
must conclude that the perception of reality which the 
model attempts to capture is not sufficiently correct. 

The strengths and deficiencies of the weakest link 
models have been mentioned above and discussed in 
a previous publication [6]. They are reviewed here 
using the Item B data (Table I) as an example. The 
important improvement which the modified model 
provides over the classical model is that the modified 
model can, if necessary, represent in a physically 
meaningful manner a plateau or levelling of the mean 
strength at lower test lengths. The classical model 
cannot (Fig. 6), a deficiency which has been noted by 
others [12]. Both weakest link models, when for- 
mulated with a Weibull distribution of link strengths, 
result in no change in the coefficient of variation with 
the test length. This is generally not true and is specif- 
ically not true for Item B (Fig. 7). The significant 
increase in the coefficient of variation at the higher test 
length indicates a breakdown of one or more of the 
assumptions made in the application of these models. 
Three possible causes for the observed increase in 
coefficients of variation are non-homogeneity of the 
within-filament link strength distributions from fila- 
ment to filament, a deviation of the link strength 
distribution from a Weibull in the low-strength tail 
region, and the influence of random dimensionless 
defects which are not represented by these models. 
The second reason above has been addressed, and 
some investigation of the benefit of using a numer- 
ically defined link strength distribution has been con- 
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Figure 6 Mean filament breaking load as a function of test length 
for Item B. (�9 Table I; ( - - )  modified weakest link (Equation 6) 
with a = 5.1 dN, link strength C V =  10.8% (b = 1t) and 
;~ = 1.0cm; ( - - )  classical weakest link (Equation 5) with 
;~ll/b) aF [1 + (l/b)] = 4.55 dN, link strength C V  - 10.8% (b = 11). 
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Figure 7 Within-filament C V as a function of test length for Item B. 
(�9 Table I; ( ) classical and modified weakest-link with Weibull 
distribution of link strengths and link strength C V =  10.8% 
(b = ll). 

ducted with little success. This lead to the effort to 
develop a model which incorporates the effect of both 
finite-length links and random dimensionless defects. 

As has been mentioned, the suitability of the ran- 
dom defect model is critically dependent upon the 
form of the defect frequency distribution employed, 
and perhaps the best distribution function yet identi- 
fied is one derived from the beta distribution. This was 
described in section 2.2 above (Equation 14). Because 
of the required analysis of the raw data to remove the 
component of variability introduced by the between- 
filament strength variation (section 5.1), a fit of this 
random defect model cannot be obtained via conven- 
tional probability plotting techniques. Fitting was, 
therefore, carried out by means of a numerical "cut 
and try" approach. Although this technique admitted- 
ly does not produce an absolute best fit, it is close and 
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effectively demonstrates the capabilities and limita- 
tions of this model. The unbounded nature of Equa- 
tion 14 as S/So approaches unity results in a computa- 
tional problem which is avoided by truncating the 
function at S/So = 0.99. That is, for the computational 
purposes of this paper, only defects which result in 
a 1% or greater reduction in strength are considered 
(0 <~ S/So <~ 0.99). The numerous very minor defects 
which result in less than 1% strength reduction 
(0.99 < S/So <~ 1) are neglected. The defect frequency 
quoted in the following examples is that for defects 
which result in a strength reduction of 1% or more. 

The wider applicability of this distribution (Equa- 
tion 14) has been further tested by attempting a fit to 
the data from Item B. A fit was first attempted by 
focusing on the mean strength data. A good fit was 
possible with the distribution shape parameters c~ = 1 
and ]3 = 1 (Fig. 8a). However, these values resulted in 
an unsatisfactory fit for the CV data (Fig. 8b). When 
the best fit of the C V data is obtained with ~ = 0.1 and 
13 = 10 (Fig. 9a), the fit of the mean breaking load data 
is poor (Fig. 9b). These examples demonstrate how the 
correlation of the change in mean breaking load with 
test length and CV causes difficulties in applying this 

model to real data. This correlation is an unavoidable 
consequence of this model. 

The combined random defect-weakest link model 
described overcomes the limitations of the other 
models discussed above. The fitting of this model to 
the data has not yet been adapted to a totally com- 
putational approach, and therefore a methodology 
has been used which is guided by the understanding of 
how the various model parameters influence the re- 
sults. Firstly, it should be noted that if the data can be 
fitted using one of the simpler models described (ran- 
dora defect or modified weakest link) with little to be 
gained by going to the more complex combined 
model, then there needs to be some additional know- 
ledge which would justify using the combined model. 
This could be diameter data which indicate significant 
variation over fibre lengths comparable to the test 
length. In the case of Item B, which we have been using 
as an example, the use of the combined model appears 
appropriate. 

Fitting the combined model to Item B and the 
subsequent examples was done as follows. For  this 
fitting exercise the defect frequency, distribution para- 
meters c~ and 13 were both assumed to be equal to 
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unity. Although this reduced the capability of the 
model, it made the fitting procedure more tractable 
and also permitted direct comparison of the defect 
frequency values determined for different samples. If 
different parameters ~ and [3 are used, the cases cannot 
be compared simply based on the total number of 
defects present, because the shape of the distribution 
has changed. The coefficient of variation and mean 
strength of the Weibull distribution of links were es- 
timated from the asymptotic coefficient of variation 
and mean maximum strength occurring at the lower 
test lengths. These were 9% and 4.95 dN, respectively. 
The link length X was initially set to some large value, 
approximately 1000 cm, such that its influence on the 
fitted function would initially be insignificant, and 
then the number of defects present (1% or greater 
reduction of strength) was adjusted to obtain the best 
possible fit to the coefficient of variation data. Then, 
the value of X was adjusted to obtain the best fit of the 
mean strength versus test length data. This procedure 
was repeated and the parameters adjusted to get the 
best visual fit. As can be seen in Fig. 10, the fit ob- 
tained for Item B is quite good and clearly superior to 
the fits attainable with either the weakest link or 

random defect models. The approximate best fit was 
achieved for X = 1 cm, So = 4.95 dN and C V =  9% 
with an average of 0.6 defects cm-1 present (~ = 1 and 
[3= 1). 

The above procedure was also applied to the data 
from Item C (Fig. 11) and Item D (Fig. 12). As can be 
seen from the fits, the combined model very well 
describes the data from these samples and demon- 
strates the general usefulness of the combined model 
for describing the strength variability of aramid fibres. 

Of more specific interest are the data from items E1 
and E2. As was described, these items were both 
manufactured at the same time, but item E2 was made 
using a process which was specifically designed to 
minimize strength-reducing defects. Because of this, 
one might speculate that the weakest-link component 
of the strength variability for these samples, possibly 
associated with denier variability, may be similar, but 
that the random-defect component may be quite dif- 
ferent. Examination of the data from both items re- 
veals that the CV of strength of item E2 does not 
depend on test length. This is a characteristic of the 
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modified weakest-link model in which no random 
defects are considered (section 2.1). A regression fit of 
the Item E2 mean breaking load data to the modified 
weakest-link relationship (Equation 6) produced 
a very satisfactory fit with X = 4.2 cm, So = 5.2 dN 
and CV = 9% (Fig. 13a). The C V  of strength of Item 
E1 shows the increase at higher test lengths which is 
characteristic of random defects and suggests that the 
combined random defect-modified weakest-link 
model is appropriate. A very good fit of the Item E1 
data was achieved by computationally simply adding 
an average of 1.0 defects cm -1 to the modified 
weakest-link model fibre used for the Item E2 data 
(with a small adjustment of So from 5.2 to 5.0 dN). The 
fits obtained are shown (Fig. 13). The results of fitting 
these data are quite significant in that they support 
that validity of this modelling approach and demon- 
strate its ability to resolve the different nature of 
strength variability in two aramid fibre samples. 

The parameters used for the best fit of the aramid 
fibre samples described above have been summarized 
in Table VI. 
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T A B L E  VI  Aramid fibre breaking-load variability parameters -  
combined modified weakest link random defect model 

Parameter  I tem 

B C D E1 E2 

Link length (cm) 1 1.75 1.5 4.2 4.2 
CV of link strength (%) 9 8.2 10 9 9 
Mean link strength (dN) ~ 4.76 4.79 4.41 4.81 5 
Defects c m -  lb 0.6 0.2 1 t 0 

a Equat ion 4b. 
b Nu mb er  of defects resulting in 1% or greater reduction in strength. 

6. C o n c l u s i o n s  
Available statistical models for describing the strength 
variability along the length of a fibre existing prior to 
this work were the classical weakest-link or random 
defect models and the modified weakest-link model. 
These models have been observed to be inadequate for 



describing real data and specifically, in this study, not 
able to statisfactorily describe strength data for several 
Kevlar ~ aramid fibre samples. It is possible to math- 
ematically describe a model in which the fibre, with 
respect td  its strength, is considered to be a chain of 
randomly assembled finite-length links possessing 
a common strength distribution function on which 
strength-reducing dimensionless defects randomly oc- 
cur. That is, a combination of the modified weakest- 
link and random defect models. 

The combined model is able to describe the aramid 
fibre data quite well and considerably better than 
either of the single-mode models. The fitting para- 
meters needed to obtain good fits (Table VI) show 
that, in general, the strength variability along the 
length of the Kevlar ~ aramid fibres examined in this 
paper is characterized by 1.0 to 4.0 cm long lengths of 
relatively constant strength (with a CV of 8 to 10% 
between the strength of these lengths) on which an 
average of 0 to 1 defects cm- 1 randomly occur. 

The type of information gained from this modelling 
can be powerful in understanding the sources and 
impact of fibre strength variability. Although this 
model has been specifically developed for Kevlar | 
aramid fibres, it is very likely to be applicable to other 
fibres because it occupies such a unique position in 
combining the statistics of modified weakest-link and 
random defect models. 
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